
GigaScience

Reproducible genomics analysis pipelines with GNU Guix
--Manuscript Draft--

Manuscript Number: GIGA-D-18-00155R1

Full Title: Reproducible genomics analysis pipelines with GNU Guix

Article Type: Technical Note

Funding Information: German Federal Ministry of Education and
Research (BMBF)
(031 A538C RBC)

Dr Bora Uyar

Berlin Institute for Health Mrs Katarzyna Wreczycka

H2020 Research Infrastructures
(654248)

Dr Brendan Osberg

Abstract: In bioinformatics, as well as other computationally-intensive research fields, there is a
need for workflows that can reliably produce consistent output, from known sources,
independent of the software environment or configuration settings of the machine on
which they are executed. Indeed, this is essential for controlled comparison between
different observations or for the wider dissemination of workflows. Providing this type of
reproducibility and traceability, however, is often complicated by the need to
accommodate the myriad dependencies included in a larger body of software, each of
which generally come in various versions. Moreover, in many fields (bioinformatics
being a prime example), these versions are subject to continual change due to rapidly
evolving technologies, further complicating problems related to reproducibility. Here,
we propose a principled approach for building analysis pipelines and managing their
dependencies. As a case study to demonstrate the utility of our approach, we present
a set of highly reproducible pipelines for the analysis of RNA-seq, ChIP-seq, Bisulfite-
seq, and single-cell RNA-seq. All pipelines process raw experimental data, and
generate reports containing publication-ready plots and figures, with interactive report
elements and standard observables. Users may install these highly reproducible
packages and apply them to their own datasets without any special computational
expertise beyond the use of the command line. We hope such a toolkit will provide
immediate benefit to laboratory workers wishing to process their own data sets or
bioinformaticians seeking to automate all, or parts of, their analyses. In the long term,
we hope our approach to reproducibility will serve as a blueprint for reproducible
workflows in other areas. Our pipelines, along with their corresponding documentation
and sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx

Corresponding Author: Altuna Akalin

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Ricardo Wurmus

First Author Secondary Information:

Order of Authors: Ricardo Wurmus

Bora Uyar

Brendan Osberg

Vedran Franke

Alexander Gosdschan

Katarzyna Wreczycka

Jonathan Ronen

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Altuna Akalin

Order of Authors Secondary Information:

Response to Reviewers: Reviewer #1: The authors introduce a method that enables reproducible genomic
analyses based on GNU Guix, an open source package manager based on a
functional/transactional paradigm.

The main strength of this method is the ability to capture the full graph of a data
analysis dependencies both for the build and execution environments.

The manuscript is well written and easy to read, however there are some points that
need to be clarified or reviewed:

* When discussing the usage of containers for data analysis reproducibility, the authors
say: "Containers and binary disk images alone do not make traditional tooling any
more suitable for the purpose of reproducible science". This statement does not
provide an objective representation of the state of container technology. While
containers are not a perfect solution, they have quickly become a reference solution to
the problem of reproducibility. Several authors have shown how this technology can be
used to successfully address the problem of reproducibility of complex data analysis
workflows, see (1), (2), (3). Containers can provide the same level of bit-by-bit
reproducibility as claimed by the method proposed by the authors (if not higher). The
problem of transparency can be easily solved following best practices or using
community collections such as BioContainers.

Response:
We thank the reviewer for their feedback and agree that greater clarity is needed
regarding the benefits of our approach over containers. For many end-users, the
appeal of ‘reproducibility’ is clear enough, and indeed, containers offer bit-for-bit
identical execution binaries with ‘reproducibility’ in the same sense as ours.
Traceability (e.g. from source to application bundle), is somewhat more subtle,
however, and it is here that containers fail to offer any indication as to the origin of the
bits that make up an application bundle.
Functional package management, on the other hand, offers referential transparency,
whereby the full set of dependencies (and versions thereof) in a workspace are
explicitly declared. Guix users need not rely on trust in developers’ adherence to best
practices to be confident of exactly which versions and sources are employed in a
bundle, and to be certain that it is precisely these sources that have been used to
generate their package. With Guix, there can be no undeclared dependencies, and
malicious code cannot be hidden within an opaque binary bundle, but rather, must
remain traceable to a specific source. Ref (A) shows the prevalence of potential
security vulnerabilities in docker images, and the inheritance of such dependencies.
This is of particular importance for data security in applications that have access to
sensitive medical data, such as in bioinformatics. Indeed, as the authors of (1) state,
Guix “represents the most rigorous approach towards dependency management”.
Secondly, the authors of (2) suggest that the concept of continuous integration be
applied to rerun experiments automatically whenever updates to the source code or
data are applied. Since container description languages limit declaration of
dependencies to other containers, however, undeclared dependencies would be
ineffective as ‘triggers’, and it is not always clear when the re-execution of such
experiments would be necessary.
Theoretically, container developers adhering to best-practices could maintain their
containers’ dependency lists; however, in practice, in large projects with many
contributors, omission from human error becomes increasingly difficult to rule out. Guix
ensures that dependencies are hard-coded into a package’s construction, rather than
relying on trust in 3rd parties.
We have added text to the manuscript to highlight this distinction between simple
‘reproducibility’, and referentially transparent reproducibility offered by Guix, along with
the significance thereof.

* "Other package and environment managers .. fail to take the complete dependency
graph into account, etc". This is a central point, the authors should provide a better
description how the proposed method differs when compared to the other tools
mentioned or provide a citation to sustain their claim.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response:
As described in the above comments, Guix offers referential transparency, whereas
containers depend on best-practices and judgement of the developer. Describing the
detailed functional package management methodology behind Guix is beyond the
scope of our work, but we agree that a citation is in order, and have added references
to the works of Dolstra (2004) and Courtès (2015). The sentence in question has also
been rephrased
* The authors put a lot of emphasis on the "bit-by-bit" reproducibility of the method
proposed, however they conclude that it's not always possible due to non-deterministic
build procedures, timestamp in the source files, tools relying on external components
downloaded from the internet, etc. Maybe a better definition would be "near bit-by-bit
reproducibility". At this regard it should be noted that containers allow real bit-by-bit
reproducibility in the extend the resulting images are distributed in a binary format ie.
do not require to re-compilation of the graph of the dependencies.

Response:
We agree greater clarity is needed on the differences in ‘reproducibility’ offered by
containers and functional package management.
Containers and functional package management are complementary approaches. The
former is a means of deploying existing binaries, the latter serves to generate those
binaries. For example, containers built from Dockerfiles will differ substantially when
built on different systems or at different times, as their files are commonly produced by
non-deterministic processes, such as downloads from third-party package repositories
or non-deterministic build processes.
Guix shows that we can build complex applications --- and thus even container images
--- in a bit-reproducible fashion without having to sacrifice referential transparency or
binary provenance (i.e. knowledge of the origin of said binary). From that point,
containers produced by Guix can be copied, distributed and used without any re-
compilation, and offers all the same functionality as container images generated via
other means.
We have clarified the differences and the caveats that apply to reproducibility in the
functional package management model in the manuscript.

* When discussing the reproducibility of the proposed method, it should be taken into
account possible limiting factors. For example: the guix package is not usually
available in common Linux distributions and its installation requires root permission.
Also it's only available for the Linux operating system, therefore the applications
depending on it cannot be deployed on different platforms. While this may not be a big
problem for production scenarios, it can limit the application usage on computer
platform commonly used for development and testing purpose. Finally, how accessible
is a guix package definitions file, based on a functional notation, to an average user
without knowledge of functional programming concepts and syntax?

Response:
It is true that, for the moment at least, Guix is only available on GNU+Linux systems.
This has been now noted in the manuscript.
No knowledge of programming is required for the user to execute the pipelines
described in the manuscript; it is sufficient that users merely enter a few commands in
a terminal for installation and execution (as described in the online documentation).
Even so, they reap the benefit of reproducibility that is provided by functional package
management.
The definition of custom Guix packages requires moderate programming expertise.
Guix implements a domain specific language (DSL) that is embedded in the general
purpose programming language Guile Scheme. Guix can also automatically convert
package specifications written in JSON to its package DSL, and offers recursive
importers, which generate package specifications automatically from a variety of third-
party repositories such as CRAN, Bioconductor, CPAN, Pypi, Hackage, etc.
We would like to emphasize that the reproducibility of our method does not depend on
users installing Guix or writing package definitions themselves. They can benefit from
bit-reproducibility in other target formats, such as self-executing tarballs, SquashFS
images for use with Singularity, or Docker images, although we suggest using Guix as
a language with which to describe and understand software environments.
We have added a short note regarding the level of proficiency expected of the user,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

and the limitations of Guix-dependent workflows in the discussion.

* In the results is shown the usage of "pigx", however is not discussed what is this tool
and why is needed.

Response:
Indeed, the original manuscript left this unclear, and we thank the reviewer for pointing
out this oversight. The set of pipelines that we describe are collectively called “PiGx”,
as an acronym for Pipelines in Genomics (where the ‘x’ is intended to aid the specificity
of search results) We have clarified this in the manuscript.

* When discussing the reproducibility of the proposed method the authors provide
metrics to assess the reproducibility of the graph of dependencies for the same
pipeline deployed across three different systems. This is an interesting analysis,
however it should also be provided a more detailed discussion and quantification of the
outputs of the pipeline executions in different systems. It is mentioned that the
repeatability was impacted by the non-determinism of some of the component used in
the pipelines. Have they tried to compare the results of a pipeline not containing any
source of non-determinism?

Response:
For a pipeline without any non-deterministic elements (in our case, the bs-seq pigx
pipeline) the analysis is indeed repeatable, when a common time-stamp is supplied via
the SOURCE_DATE_EPOCH environment variable, yielding bit-for-bit identical HTML
reports on different machines. We have included a brief comment specifically
addressing reproducibility of the reports.

* The authors should provide a detailed description how to replicate the execution of
the data analysis pipelines described in the manuscript along with the used dataset.

Response:
Detailed description on the execution of the pipelines is provided in the online
documentation, available here: http://bioinformatics.mdc-berlin.de/pigx_docs/.
Regarding the specific use-cases from the manuscript, we have now also supplied
additional information (e.g. download sites, experimental accession IDs. etc.) in the
supplementary materials.

1. Möller S., et al., Robust Cross-Platform Workflows: How Technical and Scientific
Communities Collaborate to Develop, Test and Share Best Practices for Data Analysis,
https://link.springer.com/article/10.1007%2Fs41019-017-0050-4
2. Brett K Beaulieu-Jones & Casey S Greene, Reproducibility of computational
workflows is automated using continuous analysis, 10.1038/nbt.3780
3. Di Tommaso P., Nextflow enables reproducible computational workflows,
10.1038/nbt.3820

Additional citation supplied to manuscript:
Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities on
Docker Hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy (CODASPY '17). ACM, New York, NY, USA, 269-280.
DOI: https://doi.org/10.1145/3029806.3029832

Reviewer #2: The authors describe a complete set of pipelines for RNA-seq, ChIP-seq,
bisulfite sequencing and single cell RNA-seq. The focus of the pipelines is on ease of
use and reproducibility, and they build on several existing tools: GNU guix for package
installation, Snakemake for workflow execution and GNU autoconf to prepare and
document the workflow system.

They then use these tools to walk through the implementations and show example
analyses for the different pipelines. This is a great set of documentation and useful
resource for the community.

Finally the authors describe an effort to characterize the reproducibility of the pipeline
install to the level of hash-identical tools. This demonstrates that the hash-level issues

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

are due to timestamps and other non-deterministic parts of binary builds affecting a
small fraction of the tools.

This is a great initiative and demonstrates how to build reproducible pipelines making
use of existing tooling. I have a couple of suggestions to help improve the paper:

- The major new initiative here is the use of Guix for binary compatibility. How do you
feel this improves reproducibility over conda packages with pinned versions? You
provide `requirements.txt` files in the GitHub repositories which look to represent this
approach. How did you find they compare?

Response:
We thank the reviewer, Brad Chapman, for his time and feedback. Software version
strings are prescriptive in the sense that they indicate only the intent of upstream
developers to distinguish the source code of one version from any other version that
they have authored previously. Version strings have limited descriptive power, as they
fail to provide anything beyond a short name for a set of source files, and their
descriptions are susceptible to human oversight. The configuration space (e.g. flags
passed to the configure script or Makefiles), the state of the build-time environment
(e.g. the compiler variant used to generate the binary), and dynamic linkage
information (what exact library variants were linked with the binaries) are out of scope.
This is appropriate, since version strings aren’t intended to fully capture this state, but
then version strings alone are insufficient to describe an application.
In the case of Conda, the current state of the Conda repositories remains undeclared,
which precludes referential transparency (see discussion above) --although this could
theoretically be approximated by maintaining a snapshot of the collection of Conda
recipes and a well-defined, immutable build environment for all binaries. In practice,
however, these recipes often refer to network resources; completely capturing the state
of all such resources is infeasible.
With Guix the complete state for all packages is encoded in the state of the Guix
source repository. There are no dependencies on the state of the system performing a
package build. The build environment itself is reproducible without depending on
opaque binary state.

- It would be worth mentioning alternative full stack alternatives to the workflow
approach you're taking. The most community driven one is Common Workflow
Language plus a variety of runners. Right now this reads a bit as if you need
Snakemake for the implementation, while in reality your approach with guix should
work across multiple runners. What would it take in your opinion to utilize different
workflow systems?

Response:
Indeed, Snakemake is not the only possible workflow framework that could be chosen
for this particular set of pipelines; the choice of workflow framework is arbitrary.
Snakemake was chosen primarily because it is already well-enough established, and
compatible with a well-known programming language (i.e. Python). Thus, we felt the
choice would be conducive to ease of use and adoption. We have added text to the
manuscript to clarify the reasoning for this choice.

- Could you mention thoughts on maintainability of these pipelines over time? One of
the hardest parts of building these types of integrated systems is continuing to develop
and improve, which is where community engagement of existing solutions (bioconda,
CWL) helps provide many hands to keep moving things forward. Do you feel that guix
provides an advantage in terms of maintenance? How do you plan to support bugs and
issues in previous versions as users go back to run older pipelines?

Response:
The collection of bioinformatics software in Guix has seen continued maintenance and
development by people working in different institutions with a focus on bioinformatics.
Although the number of regular contributors is probably smaller than the number of
contributors to bioconda, it is growing and the community is actively inviting
contributions and mentors newcomers, e.g. through Outreachy, GSoC, or internships
at participating institutes. We are hopeful that the benefits provided by Guix will
encourage more people in bioinformatics and other computationally intensive fields to

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

adopt this approach.
The pipelines themselves are already being used for many collaborations within the
Max Delbrueck Center. To broaden our user-base, our group also conducts regular
training sessions for scientists who lack familiarity with computational bioinformatics at
this institute and beyond. We encourage users of PiGx to contribute to the pipelines
and share their experiences with us; to that end we have set up public source code
repositories, a web site, and a public mailing list.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability

(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Reproducible genomics analysis
pipelines with GNU Guix

Ricardo Wurmus1*, Bora Uyar1*, Brendan Osberg1*, Vedran Franke1*, Alexander Gosdschan1*,
Katarzyna Wreczycka1, Jonathan Ronen1, Altuna Akalin1#

1The Bioinformatics Platform, The Berlin Institute for Medical Systems Biology, Max-Delbrück Center for
Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
* Equal contributions
Corresponding author (e-mail: altuna.akalin@mdc-berlin.de)

Keywords: Pipelines in genomics, reproducible software, functional package management,
RNA-seq, single cell RNA-seq, ChIP-seq, Bisulfite-seq, differential expression, differential
binding, differential methylation.

Manuscript Click here to access/download;Manuscript;Reproducible
genomics pipelines with GNU Guix (6).pdf

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=46682&guid=f4ca3ada-1a20-481c-aff8-2cc3e2466385&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=46682&guid=f4ca3ada-1a20-481c-aff8-2cc3e2466385&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2074&rev=1&fileID=46682&msid=023cad31-1656-49f1-99a5-3fe618cfc671

Abstract
In bioinformatics, as well as other computationally-intensive research fields, there is a need for
workflows that can reliably produce consistent output, from known sources, independent of the
software environment or configuration settings of the machine on which they are executed.
Indeed, this is essential for controlled comparison between different observations or for the
wider dissemination of workflows. Providing this type of reproducibility and traceability, however,
is often complicated by the need to accommodate the myriad dependencies included in a larger
body of software, each of which generally come in various versions. Moreover, in many fields
(bioinformatics being a prime example), these versions are subject to continual change due to
rapidly evolving technologies, further complicating problems related to reproducibility. Here, we
propose a principled approach for building analysis pipelines and managing their dependencies.
As a case study to demonstrate the utility of our approach, we present a set of highly
reproducible pipelines for the analysis of RNA-seq, ChIP-seq, Bisulfite-seq, and single-cell
RNA-seq. All pipelines process raw experimental data, and generate reports containing
publication-ready plots and figures, with interactive report elements and standard observables.
Users may install these highly reproducible packages and apply them to their own datasets
without any special computational expertise beyond the use of the command line. We hope
such a toolkit will provide immediate benefit to laboratory workers wishing to process their own
data sets or bioinformaticians seeking to automate all, or parts of, their analyses. In the long
term, we hope our approach to reproducibility will serve as a blueprint for reproducible
workflows in other areas. Our pipelines, along with their corresponding documentation and
sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://bioinformatics.mdc-berlin.de/pigx

Introduction
Reproducibility of scientific workflows is a ubiquitous problem in science, and is particularly
problematic in areas that depend heavily on computation and data analysis (see (Peng 2011)).
For such work it is essential that installed software is identical to versions used in publication,
and directly traceable to a well-defined set of source packages in order to facilitate the
reproduction of published data and the controlled manipulation of these software systems.
Unfortunately, this goal is often unattainable for a variety of related reasons: Research-oriented
software may be hard to build and install due to unsatisfiable dependency constraints; non-trivial
software may yield different results when built or used with different versions or variants of
declared dependencies; on workstations and shared High Performance Computing (HPC)
systems alike, it may be undesirable or even impossible to comply with version and variant
requirements due to software deployment limitations. Moreover, It is unrealistic to expect users
to manually recreate environments that match the system and binary substrate on which the
software was developed. In the field of bioinformatics the above problem is exacerbated by the
fact that data production technology moves extremely fast; existing software and data analysis
workflows require frequent updates. Thus, it is paramount that multiple versions and variants of
the same software can be automatically built, in order to ensure reproducibility of projects that
are either in-progress, or are already published. Moreover, bioinformatics workflows are
increasingly being applied to potentially sensitive medical data from research participants. For
the sake of data security, then, it is important that researchers know exactly what sources are
being used in an application in order to minimize the risk of code that might (either maliciously
or inadvertently) compromise confidentiality (Shu 2017). Thus, bioinformatics represents a field
where there is a need for both reproducibility, and referential transparency (i.e. traceability to
original software sources).

An important related issue is the reproducibility of workflows and pipelines across different
machines. In addition to bioinformatics, many scientific fields require the researcher to prototype
their code on local workstations with a custom software stack, and then later run it on shared
HPC clusters for large data sets. The researcher must then be able to recreate their local
environment on the cluster to ensure identical behavior. All of these concerns add to the burden
on scientists, and valuable time that could be spent on research is wasted accommodating the
limitations of system administration practices to ensure reproducibility. Even worse,
reproducibility failures can be overlooked amid this complication, and publications could be
accompanied with irreproducible analysis workflows or software. For these reasons, the
scientific community in general -and fast evolving fields like bioinformatics in particular- need
reliable and reproducible software package management systems.

In recent years, several tools have gained popularity among software developers and system
administrators for wrapping Linux kernel features to accomplish process isolation, bind mounts,
and user namespaces, or to deploy services in isolated environments (also called “containers”).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/Yxf0

Examples of such tools include: Docker, Singularity, and lxc. These tools are sometimes also
proposed as solutions to the reproducibility problem (Peng 2011; Boettiger 2015), because they
provide a way to ship an application alongside all of its runtime dependencies. This approach
necessitates the use of file system images that are modified using imperative statements, e.g. to
run a package manager inside a namespace, with the goal of embedding all dependencies in an
opaque binary image.

Such images, however, offer no indication as to the sources from which their contents originate.
Although contributors following best practices will generally declare their dependencies, with
many contributors, and inevitable human error, it can often become difficult to confidently
ascertain the full contents of an opaque binary bundle. Software deployment inside of the
container is still subject to the well-known limitations of traditional package managers, such as
intractable stateful behavior, time-dependent installation results, the inability to install and
control more than a handful of application- or library- variants of packages on the same system,
to name a few. Some of these limitations can partially be worked around by following strict
policies such as operating version-controlled mirrors of all upstream package repositories.
However, these policies are not enforced by container systems like Docker. Rather, they only
shift the problem of reproducibility from the package level to the level of binary disk images, a
rather less useful level of abstraction.
Functional package management (Dolstra, 2004), on the other hand, embeds the complete
dependency graph and configuration space into the construction of the package itself. This
approach allows for referential transparency in addition to bit-for-bit build reproducibility. Other
package and environment managers (such as Conda, EasyBuild, or Spack) leave out this
information to varying degrees, and rely on tacit assumptions about the deployment- and build-
environments.

For the above reasons, we propose functional package management as implemented in GNU
Guix (Courtès, 2015) as a way to implement workflow systems. To demonstrate the feasibility of
this approach, we created a set of analysis tools (or 'pipelines') for common genomics analysis
data sets: RNA-seq, ChIP-seq, BS-seq and scRNA-seq (for the sequencing of RNA, Chromatin
Immunoprecipitation, Bisulfite-treated DNA, and single-cell resolution RNA, respectively). Each
pipeline has a complex and large graph of dependencies, and each graph is comprehensively
declared as a GNU Guix package definition; the graph is then built reproducibly by relying on
Guix package manager features. Note that these pipelines also represent production-level
pipeline tools, rather than simply model examples -they come with a full set of features including
alignment, quality checking control, quantification, assay specific analysis and HTML reports.
This set of pipelines is referred to, collectively, with the acronym PiGx (for Pipelines in
Genomics) --pronounced “pigs”. 1

1 The trailing x serves primarily as an aid to search-specificity, and denotes implementation
using Guix)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/Yxf0+XXNR

Results

Pipeline design and implementation philosophy
PiGx was designed with special focus on several key features: namely, that they be 1) easy to
use, 2) easy to install, 3) easy to distribute, 4) reproducible and 5) referentially transparent,
many of which are inter-related constraints. Care was taken to ensure that all of the pipelines
have a similar interface, so that familiarity with one pipeline would make for a gentler learning
curve in using the others. For the end-user, each pipeline has the same input types: a sample
sheet and a settings file. The sample sheet contains information about samples (such as
names, labels, covariates etc.) The settings file contains extra arguments related to the
execution of the pipelines. The users can generally run pipelines as follows:
 pigx [pipeline_name] [sample_sheet] -s [settings_file]

where [pipeline_name] can refer to any of the four pipelines: “rnaseq”, “chipseq”, “bsseq”, or
“scrnaseq”. The resulting output provided to the users includes high quality reports and figures
containing a standard set of results from basic analyses and data quality checks. Where
appropriate, reports also contain certain interactive elements.

In implementing this toolset, one of our first design choices was to use a conventional build
system, the GNU Autotools suite, to configure and build the pipelines as if they were first-class
software packages in their own right rather than a mere collection of tools and “glue code”.
Instead of assuming that a user will provide a suitable environment at runtime, the use of a build
system allows us to capture the software environment at configuration time. This is achieved by
explicitly checking for the presence of required tools in the build environment and recording their
exact location in the pipeline's configuration file. At runtime, the pipeline refers only to tools
through the configuration file and does not assume the availability of dependent software in the
global environment. Moreover, using a well-established build system makes it easy to package
the pipelines for any package manager. We chose GNU Autotools over other build systems for
two reasons: it does not require users to have a copy of the build system software as it compiles
to shell code (which is highly portable), and it has been established long enough to implement a
conventional and flexible build interface with well-known behavior even in somewhat unusual
circumstances, such as the installation of files into unique prefixes as is done when building with
GNU Guix.

Capturing the build-time environment alone is not enough to ensure reproducibility, nor is the
use of a build system sufficient to make installation easy. Thus, our second design choice was
to package the pipelines for the GNU Guix package manager. Like other user-level package
managers such as Conda or EasyBuild, GNU Guix allows users to install, upgrade and remove
software without having to know the details of dependencies or the build procedure. Unlike
traditional package managers, however, GNU Guix takes a declarative approach to software

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

environments called functional package management. This approach takes into account the
complete graph of dependencies and build-time configurations, and maximizes build
reproducibility by building binaries in isolated environments. Packages are installed into
directories with unique prefixes that are computed from the dependency graph, allowing for the
simultaneous installation of different versions or variants of applications and libraries. With
functional package management, a given software build will generally yield bit-identical files
when the build is performed on different machines or on the same machine at different points in
time, independent of the current state of the system (caveats to this generalization are
discussed below).

We consider software reproducibility an important asset in controlled experimentation.
Reproducing a software environment bit for bit is not a goal in itself, but it provides us with a
foundation upon which we can perform precise changes to the environment and assess the
impact of these changes. Without bit-for-bit reproducibility we cannot be certain of the nature
and impact of differences in the software environment. While virtual machines or binary
application bundles such as Docker images would be sufficient to freeze the state of our
software environment, relying on these tools would forgo the ability to recreate that same
environment from scratch; nor would it be possible to analyze the environment at the level of
software packages. The approach of functional package management as implemented in GNU
Guix preserves the relationships between software packages and ensures that differences to
the environment can be accounted for.

A further design choice remained regarding the workflow management system, which would
execute a series of tasks mostly in the form of scripts from different programming languages.
For this purpose, we used SnakeMake (Köster and Rahmann 2012), which provides
target-driven execution infrastructure similar to GNU Make but with Python syntax, along with
useful features such as parallel execution on HPC scheduling systems. We would like to
emphasize, however, that this choice of workflow management system was made purely to
facilitate ease of development and acceptance within the bioinformatics community, where the
Python programming language is well-established. The different pipeline stages are
implemented with a workflow management system stitching together various bioinformatics
tools; they are made configurable with the GNU Autotools and packaged with GNU Guix. This
means they will be almost fully (see below) build-reproducible and can be installed via the
one-liner:
guix package --install pigx .

RNA-seq pipeline

General Description of PiGx-RNA-seq Pipeline

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/CbFA

PiGx RNA-seq provides an end-to-end preprocessing and analysis pipeline for RNA-seq
experiments. The pipeline takes a set of raw fastq read files and the experimental design as
described by the user, and produces differential expression reports with figures and tables of
differentially expressed genes, as well as gene ontology (GO) term analysis thereof.
Furthermore, it provides quality control reports about the experiment. To use the pipeline, the
user must provide two files: the sample sheet describing the samples and corresponding fastq
files, and a settings file with configuration parameters related to the pipeline’s execution. The
settings file lists, among other things, the location of a reference genome for alignment, a GTF
file with genome annotations, and a transcriptome reference, as well as a list of desired
differential expression analyses to be performed, specifying which samples to use as cases and
controls --see package documentation here
http://bioinformatics.mdc-berlin.de/pigx_docs/pigx-rna-seq.html for more details.

The pipeline can then be run with the command
 pigx rnaseq [sample_sheet] -s [settings_file] , to generate the output
through several intermediate steps (see figure 1).

PiGx RNA-seq uses the reference genome and transcriptome provided by the user to produce
indices using STAR (Dobin et al. 2013) and Salmon (Patro et al. 2017) respectively. It then uses
Trim Galore! (Babraham 2018b) to trim low quality reads and remove adapter sequences before
aligning the reads to the reference using STAR. At this point, PiGx RNA-seq uses fastqc
(Babraham 2018a) and MultiQC (Ewels et al. 2016) to generate comprehensive quality control
reports of the sequencing, trimming, and alignment steps. PiGx RNA-seq also uses BEDTools
(Quinlan and Hall 2010) to compute the depth of coverage in the experiment and outputs
convenient bedgraph files. Gene expression quantification is obtained from STAR, and
transcript level quantification using Salmon. The gene expression count matrix is then used to
run differential expression analyses as specified by the user, using DESeq2 (Love, Huber, and
Anders 2014) for statistical analysis and g:ProfileR (Reimand et al. 2007) for GO term analysis.
Each differential expression analysis produces a self-contained HTML report.

The differential expression reports produced are comprehensive, including sortable tables for
differentially expressed genes for a detailed view, principal component analysis plots for a
birds-eye view of the experiment, as well as MA and volcano plots. In addition, the reports
include a section with GO term enrichment analysis.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/jrAH
https://paperpile.com/c/gIJdYe/ZM3T
https://paperpile.com/c/gIJdYe/X1ta
https://paperpile.com/c/gIJdYe/IeGU
https://paperpile.com/c/gIJdYe/v4sN
https://paperpile.com/c/gIJdYe/E0Sg
https://paperpile.com/c/gIJdYe/vpy5
https://paperpile.com/c/gIJdYe/vpy5
https://paperpile.com/c/gIJdYe/ZXmI

Figure 1
Workflow diagram of the PiGx-RNA-seq pipeline.

RNA-seq Use Case
The study by Hon et al. (2014) is motivated by several observations: DNA methyl-transferases
(DNMTs) are the major mediators of cytosine methylation (producing 5-methyl-cytosine). 5hmC
(5-hydroxy-methyl-cytosine) is a product of oxidation of 5mC's, and the TET family of proteins
mediate 5mC oxidation. It has been established that DNA demethylation consists of the
sequence of chemical reactions that convert 5mC into 5hmC, which is subsequently converted
into 5fC (5-formyl-cytosine) and 5caC (5-carboxyl-cytosine). Active enhancers are depleted for
5mC but are enriched for 5hmC marks (Rampal et al. 2014), suggesting that an interplay
between DNMTs and TET proteins could determine the activity level of enhancers. Mutating
DNMTs or TET proteins in mouse embryonic stem cells (mESCs) perturbs global DNA
methylation status, however cells do not lose the ability to regenerate. Moreover, mutating TET
proteins and perturbing the oxidation levels have previously been shown to skew the
differentiation of mESCs. Based on these facts, the authors address the following question: Can
the skewed differentiation in mESCs be explained by deregulated balance of 5mC / 5hmC levels
at active enhancers following the loss of activity of TET proteins?

The authors of the above study use TAB-Seq, Bisulfite-Seq, ChIP-seq and RNA-seq methods to
profile genome-wide methylation, demethylation, histone modifications and gene expression
levels to address these questions. They find that Tet2 has the biggest role in enhancer
demethylation in mESCs. Deletion of Tet2 leads to enhancer hypermethylation, which in turn
reduces enhancer activity. The reduced enhancer activity leads to a disruption in the activation
of more than 300 genes in the early stages of differentiation, however the activity levels of these

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/srXh
https://paperpile.com/c/gIJdYe/srXh
https://paperpile.com/c/gIJdYe/srXh
https://paperpile.com/c/gIJdYe/7ONW

genes are restored to wild-type levels at the later stages of differentiation. Reduced enhancer
activity followed by delayed gene activation explains the skew observed in mESC differentiation.

The authors of the above study profile the transcriptomes of mESCs as they differentiate into
neural progenitor cells (NPCs) within a six day period. They quantify gene expression levels of
wild-type, Tet1 -/- and Tet2 -/- cells on day zero, day three, and day six and sequenced two
biological replicates per sample. Thus, they obtained 18 samples in total (3 genotypes x 2
replicates x 3 days). In figure 5 of the original manuscript, the authors summarise the results of
the RNA-seq analysis. Here, we use the PiGx-RNA-seq pipeline to pre-process the raw fastq
files downloaded from the GEO archive (GEO accession: GSE48519), map the reads to the
Mus musculus genome (GRCM38 (mm10) build), and finally quantify the expression levels of
genes using both Salmon (Patro et al. 2017) and STAR (Dobin et al. 2013). We then use
DESeq2 (Love, Huber, and Anders 2014) to perform multiple differential expression analyses as
described in the original publication. Based on the processed and normalized count tables and
differential expression analysis results produced by the PiGx pipeline, we have written a small
custom script to reproduce the panels in figure 5 of Hon et al. In order to reproduce this figure,
we needed to perform seven differential expression analyses as described in Table 1. HTML
reports for each differential expression analysis (based on read counts computing using STAR)
can be found here: http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html.

Analysis Case Sample Control Sample Description

tet2_diff_day3 day3_tet2_KO day0_tet2_KO
Tet2 -/- cells on day 3 are
compared to Tet2 -/- cells on day
0.

tet2_diff_day6 day6_tet2_KO day0_tet2_KO
Tet2 -/- cells on day 6 are
compared to Tet2 -/- cells on day
0.

WT_diff_day3 day3_WT day0_WT
Wild-type cells on day 3 are
compared to wild-type cells on
day 0.

WT_diff_day6 day6_WT day0_WT
Wild-type cells on day 6 are
compared to wild-type cells on
day 0.

tet2_vs_WT_day0 day0_tet2_KO day0_WT
Tet2 -/- cells on day 0 are
compared to wild-type cells on
day 0.

tet2_vs_WT_day3 day3_tet2_KO day3_WT
Tet2 -/- cells on day 3 are
compared to wild-type cells on
day 3.

tet2_vs_WT_day6 day6_tet2_KO day6_WT Tet2 -/- cells on day 6 are
compared to wild-type cells on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/ZM3T
https://paperpile.com/c/gIJdYe/jrAH
https://paperpile.com/c/gIJdYe/vpy5
http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html

day 6.

Table 1
Differential expression analyses performed by PiGx-RNA-seq.

Having performed the above analysis, we first took a global look at how all sequenced samples
cluster. Using a table of TPM (transcripts per million reads) counts generated by Salmon at the
gene level, we selected the top 100 most variable genes and plotted a heatmap of all the
samples using pheatmap package (Kolde 2018). We observed that the samples mainly cluster
by the differentiation stage rather than genotype, which confirms the authors' findings (figure
2A). Next, again using the same TPM counts table, we plotted the expression levels of a select
list of genes (Nes6, Pax6, Sox1, Tet1, Tet2, Tet3, Slit3, Lmo4, Irx3) on day 0, day 3, and day 6
(figure 2B). The changes in the expression levels of these genes perfectly match the patterns as
described by Hon et al. At this point the authors recognise that some neural marker genes such
as slit3 and lmo4 show discordant expression patterns between WT and Tet2 -/- samples
particularly on day 3, which are restored back to WT levels on day 6. The authors then
investigated whether such a delayed induction mechanism can be observed globally. It was
shown that the percentage of genes that are differentially expressed in both Tet2 -/- and WT
cells (compared to the undifferentiated samples of the corresponding genotypes on day 0), is
significantly higher on day 6 than on day 3. We also observe a similar pattern, however the
difference we observe is somewhat reduced. Our findings are reproduced based on gene
counts quantified by both STAR and Salmon (figure 2C).
In figure 5F of the original publication, the authors take a closer look into the list of discordantly
induced genes on day 3 in Tet2 -/- samples. There it is shown that the majority of the genes that
get induced in WT samples by day 3, don't get induced in the Tet2 -/- samples as highly as they
do in the WT samples. On the other hand, these numbers are comparable on day 6. We also
observe the same difference and reproduce the findings using both Salmon and STAR-based
gene counts (figure 2D). This suggests that there must be a list of genes that get activated in
WT, but lag behind in Tet2 -/- samples at the early stage of differentiation, however they catch
up later with the WT levels. The authors call these genes ‘delayed induction genes’ and find 333
genes that fit such a description. In figure 5G, the authors show the relative expression of these
genes in Tet2 -/- samples compared to WT samples throughout differentiation and compare it to
the remaining list of genes in the genome. We have successfully reproduced the same patterns
based on 357 delayed induction genes detected by Salmon-based gene counts (282 genes
detected by STAR-based gene counts) (Figure 2E). In figure 5H, the authors show the most
significant GO terms enriched for the delayed induction genes. Although we don't observe the
same set of terms as reported by the authors, we found seven development-related GO terms
including 'tissue development' and 'nervous system development' as enriched terms (figure 2F).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/ldmr

Figure 2
Reproduction of figure 5 from (Hon et al. 2014) using datasets processed by PiGx-RNA-seq
pipeline. A) Hierarchically clustered heatmap of the top 100 most variable genes across all
samples (transcripts per million (TPM) aggregated on the gene level, produced with Salmon).
Each row represents a gene and each column represents a sequenced sample (See Table 1 for
descriptions of the samples). The expression values are scaled by 'row'. B) Changes in the
expression levels of a selected list of genes throughout differentiation period on day 0, day 3,
and day 6. The y-axis shows the normalised expression levels (TPM at gene-level). The
expression patterns of samples with Tet2 -/- background are depicted in black and wild type
background in orange. C) Abundance of differentially expressed genes (adjusted p-value < 0.1)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/srXh

(on y-axis) when comparing samples on day 3 or day 6 with the samples on day 0 with
corresponding genotypes (Tet2 -/- or wild-type). The bar labeled 'overlap' represents the number
of differentially expressed genes in both genotypes. The percentage is calculated by dividing the
value of 'overlap' with the value of Tet2 . The results are reproduced by both Salmon-based
gene-level read counts (top row) and STAR-based gene-level read counts (bottom row). D)
Genes that are up-regulated (induced) in wild-type samples on day 3 (or day 6) compared to
wild-type samples on day 0, are intersected with genes that are differentially expressed between
wild-type samples and Tet2 -/- samples at the same stage of differentiation, and classified as
'Tet2 > wt' (the gene is up-regulated in the Tet2 -/- sample more so than in the wild-type sample)
or 'Tet2 < wt' (the gene is upregulated in Tet2 -/- sample less than in the wild-type sample). The
plot is reproduced using both Salmon-based gene counts and STAR-based gene counts. E)
Heatmaps for delayed induction genes (on the left) and 500 genes randomly selected from the
remainder (on the right). The colors of the heatmap represent the log2 scale ratio of normalised
expression value (gene-level TPM counts obtained using Salmon) of each delayed induction
gene between Tet2 -/- sample and the wild-type sample of the corresponding replicates (r1:
replicate-1, r2: replicate-2) on the corresponding stages of differentiation (day 0, day 3, and day
6). The rows of the heatmap are ordered in increasing order based on the average values of the
two replicates on day 3. The color scales range between -1 and 1 before reaching saturation. F)
Top GO terms for biological processes (on the y-axis) enriched among the delayed induction
genes. The GO terms are detected using g:ProfileR tool (Reimand 2016). The resulting terms
are filtered for p-value<0.05 and further filtered for the keyword 'development'. On the x-axis, the
p-values are depicted at log10 scale.

ChIP-seq pipeline

General Description of PiGx-ChIP-seq Pipeline

PiGx ChIP-seq is an end-to-end processing and analysis pipeline for ChIP-seq experiments.
From the input fastq files, the pipeline produces sequencing quality control, ChIP quality control,
peak calling, and IDR (Q. Li et al. 2011) estimation. PiGx ChIP-seq also prepares the data for
visualization in a genome browser. The pipeline execution is highly customizable - the user can
specify which parts of the pipeline to execute, and which parameter settings to use. As in the
other pipelines, to use PiGx ChIP-seq, the user must provide two files: a sample sheet
containing the names of the fastq files with a descriptive label, and a settings file. The settings
file contains the locations of the reference genome, and the GTF file with genome annotations,
as well as a list of configurations for each executable step. Upon completion, the user is
provided with quality reports, and all of the pre-processed data, which substantially facilitates
downstream analysis and visualization.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://authorea.com/users/2328/articles/215552-reproducible-genomics-pipelines-with-gnu-guix#Li_2011
https://paperpile.com/c/gIJdYe/gIcC
https://paperpile.com/c/gIJdYe/gIcC
https://paperpile.com/c/gIJdYe/gIcC

The pipeline can then be run with the command:
 pigx chipseq [sample_sheet] -s [settings_file]

PiGx ChIP-seq pipeline aligns the reads to the genome using Bowtie2 (Langmead and Salzberg
2012), does peak calling using MACS2 (Zhang et al. 2008), calculates the irreproducibility rate
and outputs a series of quality statistics, such as: GC content, strand cross correlation,
distribution of reads and peaks over annotated genomic features, and clustering of samples
based on their similarity (Landt et al. 2012). The pipeline also produces UCSC Track hubs to
facilitate exploration of the dataset. The purpose of the pipeline is to improve the routine
processing steps for ChIP-seq experiments and enable the user to focus on data quality control
and biologically relevant data exploration. The pipeline heavily depends on Bioconductor (Huber
et al. 2015) packages such as GenomicRanges (Lawrence et al. 2013) and Genomation (Akalin
et al. 2015) for annotating peaks and summarizing ChIP-seq scores over regions of interest.

Figure 3
Workflow diagram for ChIP-seq pipeline

ChIP-seq Use Case

For consistency, we applied the ChIP-seq pipeline to data from the same study as in the section
“RNA-seq Use Case” above (Hon et al. 2014); for the biological underpinnings of this
experiment, please see the description provided there. Figure 4 shows part of the ChIP-seq
quality control output performed on untreated, wild type ChIP samples, of various activating and
repressing histone marks, and the corresponding input samples. One standard procedure is to
validate the consistency of results with known biological priors, in order to quickly find samples
with outlying properties, and to discover batch effects. For example, figure 4A shows the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://authorea.com/users/2328/articles/215552-reproducible-genomics-pipelines-with-gnu-guix#Langmead_2012
https://paperpile.com/c/gIJdYe/sPja
https://paperpile.com/c/gIJdYe/sPja
https://paperpile.com/c/gIJdYe/YHHS
https://authorea.com/users/2328/articles/215552-reproducible-genomics-pipelines-with-gnu-guix#Landt_2012
https://paperpile.com/c/gIJdYe/SsXe
https://paperpile.com/c/gIJdYe/xgxK
https://paperpile.com/c/gIJdYe/xgxK
https://paperpile.com/c/gIJdYe/xgxK
https://paperpile.com/c/gIJdYe/DypH
https://paperpile.com/c/gIJdYe/mAgD
https://paperpile.com/c/gIJdYe/mAgD
https://paperpile.com/c/gIJdYe/mAgD

expected clustering of repressive (H3k27me3, H3k9me3) and activating (H3k4me3, H3k4me1,
H3k27ac, and H4k36ac) histone marks. Upon closer inspection, however, it becomes clear that
the activating histone marks cluster by their corresponding batches, and not by their biological
functionality.

Figure 4B shows the cross-correlation between the signal on the plus and minus genomic
strands, shifted by a defined range (usually within a range of 1 - 400 nucleotides). The
maximum intensity in each row indicates the average DNA fragment size in each corresponding
ChIP experiment. Large discrepancies in the cross correlation profile, between experiments, can
indicate problems with fragmentation, fixation, or chromatin immunoprecipitation. The figure
shows that most of the samples have an average fragment size between 100 - 150 bp. One of
the H3k27me3 replicates, however, shows an aberrant fragment size profile (second sample in
the plot). Upon visual inspection, the sample had an extremely low signal to noise ratio and the
peak calling resulted in zero enriched regions. Such samples should either be repeated or
omitted from the downstream analysis.

Figure 4C represents the relationship between the GC content of one kilobase genomic bins
and the ChIP signal; this plot is used as a diagnostics tool for enrichment of fragments with
extreme nucleotide content (enrichment of fragments with GC content strongly deviating from
the genomic mean), which can indicate problems with PCR-based fragment amplification, and
chromatin immunoprecipitation.

Figure 4D represents the distribution of reads over functional genomic features. It is used to
observe whether the experimental results conform to known expectations, based on previous
experiments - i.e. H3k4me3 should show strong enrichment over transcription start sites, while
the H3k36me3 should show an enrichment over exonic and intronic regions. Deviating results
can indicate a weak precipitation of the targeted protein, or antibody cross-reactivity with
unexpected epitopes. Figure 4 represents just a subset of quality control metrics implemented
as a standard output from the PiGx ChIP-seq pipeline. The full set can be found here:
https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html

Figure 4
Example ChIP-seq quality control output. A) Clustering of samples based on correlation of
normalized ChIP reads in one kilobase bins. B) Cross correlation between coverage profiles on
Watson and Crick strands, shifted by the amount specified on the x axis. C) Relationship
between read count and GC content in 1 kb bins. D) Distribution of reads in functional genomic
features.

BS-seq pipeline

General description of the PiGx BS-seq pipeline

PiGx BS-seq is a bisulfite sequencing processing pipeline used to detect genome-wide
methylation patterns and to perform differential methylation calling for case-control settings. It
produces individual reports for each sample provided by the user, in addition to
differential-methylation reports for arbitrarily many pairs of treatment conditions provided by the
user. PiGx BS-seq uses Trim Galore! (Babraham 2018b) to trim reads for adapter sequences
and quality, and fastqc (Babraham 2018a) for quality control (both before and after trimming). If
necessary, PiGx BS-seq produces GA- and CT- converted versions of the reference genome for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/X1ta
https://paperpile.com/c/gIJdYe/IeGU

alignment, using bismark_genome_preparation (Krueger and Andrews 2011). Reads are then
mapped to the reference using Bowtie2 (Langmead and Salzberg 2012), before being sorted by
location in the genome and filtered for uniqueness using samtools (Krueger and Andrews 2011;
H. Li et al. 2009). The corresponding reports and .bam files for each of these steps are saved to
their respective directories.

As in the other pipelines, to use PiGx BS-seq, the user must provide two input files: a sample
sheet containing the paths to the fastq files with a descriptive label, and a settings file. The
pipeline is robust to paired-end or single-end input data, and processing of each case is initiated
automatically, based on whether the user supplies only a single input file, or a pair of files, for a
given sample. The settings file contains the locations of the reference genome, among other
directories, as well as a list of configuration steps for each executable step. The pipeline can
then be run with the command:
 pigx bsseq [sample_sheet] -s [settings_file]

Post-mapping analysis steps performed automatically by PiGx BS-seq include tabulation of the
fractional methylation of CpG sites, the segmentation of genomic methylation patterns across
the genome, and the selection of differentially methylated sites between pairs of treatments
provided in the settings file above. Furthermore, the final reports include genomic annotation of
differentially methylated regions and methylome segments. A single execution of the pipeline
can perform differential methylation analysis between a sample and arbitrarily many references;
each comparison will have its own dedicated report, in addition to the final report for the sample
itself. For traceability, direct links to input files, and various execution tools are saved directly
within the output folder. Finally, a copy of the full methylome for each sample is also saved in
BigWig (.bw) format, compatible with visualization in an online genome browser.

Figure 5
Workflow diagram for PiGX BS-seq pipeline

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/9oSV
https://authorea.com/users/2328/articles/215552-reproducible-genomics-pipelines-with-gnu-guix#Langmead_2012
https://paperpile.com/c/gIJdYe/sPja
https://paperpile.com/c/gIJdYe/9oSV+UcS9
https://paperpile.com/c/gIJdYe/9oSV+UcS9
https://paperpile.com/c/gIJdYe/9oSV+UcS9
https://paperpile.com/c/gIJdYe/9oSV+UcS9

BS-seq Use Case
We applied the BS-seq pipeline to data from embryonic stem cells in mice, comparing wild type
and Tet2 deletion experiments (accessions SRX317877, and SRX317883 respectively). These
data sets derive from the same study as was used for controlled comparison in the section
“RNA-seq Use Case” above (Hon et al. 2014); for a biological description of this experiment,
please refer to that section. HTML reports for each of the performed analyses can be found
here: https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html

Figure 6 shows a standard set of data analysis metrics generated automatically by the pipeline.
For example, methylation levels near the promoter region of a list of annotated genes for each
sample are shown in figures (A) and (B). For generality, figure 6 averages over all known genes,
however the user may freely probe for more specific results by supplying any arbitrary set of
genes under investigation (in the absence of such an annotation file, this figure is simply omitted
from the final report). A coarse map of the genome is provided in (C), which, for some datasets,
may serve to highlight differential methylation localized to particular regions or chromosomes. In
this particular use-case it is more useful as a null control showing that these regions are
uniformly distributed throughout the genome. In addition, a histogram for differential methylation
status of CpGs throughout the genome is provided in (D) using the same colour-code as in (C).
The methylation differences of hyper-methylated, hypo-methylated and non-differentially
methylated CpGs are shown as histograms with the color-code as in Figure 6C. The latter is
shown as a distribution of methylation differences deemed to be not statistically significant (in
black), and since these are generally far more numerous than the former, the two curves are
normalized independently. Note also that since these curves represent relative distributions, the
vertical axis is of arbitrary units and tick marks are omitted. Finally, a screenshot of
data-visualization from the genome browser (Robinson et al. 2011; Thorvaldsdóttir, Robinson,
and Mesirov 2013) is provided in (E); here, regions of interest can be inspected manually at
arbitrary precision.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html
https://paperpile.com/c/gIJdYe/nU4X+yOeh
https://paperpile.com/c/gIJdYe/nU4X+yOeh

Figure 6
Output from the PiGx BS-seq pipeline. (A,B): average CpG methylation throughout the promoter
regions of the mm10 genome for Tet2 -/- and WT, respectively, as a function of distance from
TSS (in direction of transcription). C) Whole-genome map of differentially methylated CpGs, with
colour-code to indicate hyper- and hypo- methylation of the treatment (Tet2 -/-) relative to the
control (Wild-type). D) Histogram of the difference in average CpG methylation between Tet2 -/-
and wild-type. For differentially-methylated cytosines, colors are consistent with (C), while CpGs
with statistically insignificant difference in methylation are provided in black. Normalization of
these two curves is performed independently (since the latter are generally far more numerous
than the former), and the graph conveys only relative proportions (thus, as the absolute y-axis is
of arbitrary scale, units are omitted). E) Screenshot of the genome browser using bigwig data
from PiGx; here the data can be examined in much finer detail than in C).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

scRNA-seq pipeline

General description of the PiGx scRNA-seq pipeline
Single cell RNA-seq is an extremely powerful technology, that is becoming increasingly
prevalent in biological studies. The rapid development of UMI based methods, along with
droplet based cell separation (Macosko et al. 2015; Klein et al. 2015), has enabled even simple
experiments to quantify expression in several tens of thousand of cells. PiGx scRNA-seq is a
pipeline for pre-processing of UMI based single-cell experiments. The purpose of the pipeline is
to enable seamless integration and quality control of multiple single cell data sets. The pipeline
works with minimal user input. As in the other pipelines, the user must provide a sample sheet
with a basic experimental description, and a settings file which defines, among other
parameters, the location of the input data and reference sequence and annotation. The pipeline
can then be run with the command:

 pigx scrnaseq [sample_sheet] -s [settings_file]

The pipeline does preliminary read processing, maps the reads with the STAR (Dobin et al.
2013) aligner, and assigns reads to gene models. It also separates cells from background
barcodes (Alles et al. 2017), and constructs digital expression matrices for each sample (each
saved in loom format); loom files from all samples are then merged into one large loom file using
the loompy package (Linnarsson 2018). The expression data are subsequently processed into a
SingleCellExperiment (Aaron Lun and Risso 2018) object. SingleCellExperiment is a
Bioconductor class for storing expression values, along with the cell, and gene data, and
experimental meta data in a single container. It is constructed on top of hdf5 file based arrays
(Pagès 2018), which enables exploration even on systems with limited RAM (random access
memory).
During the object construction, the pipeline performs expression normalization, dimensionality
reduction, and identification of significantly variable genes. The pipeline then classifies cells by
cell cycle phase and calculates the quality statistics. The SingleCellExperiment object contains
all of the necessary data needed for further exploration. The object connects the PiGx pipeline
with the Bioconductor single cell computing environment, and enables integration with state of
the art statistical, and machine learning methods (scran (A. T. L. Lun, McCarthy, and Marioni
2016), zinbwave (Risso et al. 2018), netSmooth (Ronen and Akalin 2018), iSEE (Aaran Lun et
al. 2018), etc.).
The pipeline produces an HTML report containing quality controls, labeled by input covariates,
which can be used for detecting batch effects.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/sV5g+6GOr
https://paperpile.com/c/gIJdYe/jrAH
https://paperpile.com/c/gIJdYe/jrAH
https://paperpile.com/c/gIJdYe/1N9R
https://paperpile.com/c/gIJdYe/w7ab
https://paperpile.com/c/gIJdYe/ZMgI
https://paperpile.com/c/gIJdYe/W4jk
https://paperpile.com/c/gIJdYe/FEAs
https://paperpile.com/c/gIJdYe/FEAs
https://paperpile.com/c/gIJdYe/Nnrf
https://paperpile.com/c/gIJdYe/pvL4
https://paperpile.com/c/gIJdYe/CvFW
https://paperpile.com/c/gIJdYe/CvFW

Figure 7
Workflow diagram for PiGx-scRNA-seq pipeline.

scRNA-seq Use Case

To showcase the capabilities of PiGx scRNA-seq, we ran the pipeline on isolated single nuclei
from the mouse brain (Hu et al. 2017). In this study, the authors developed a gradient-based
method for nucleus separation, and used it in combination with Drop-seq to profile the
transcriptomes of more than 18,000 single nuclei. Figure 8 shows a part of the quality control
output from the PiGx scRNA-seq pipeline. Figure 8A shows the per sample number of total and
uniquely mapped reads. Figure 8B visualizes the cells on the first two principal components.
The color gradient corresponds to the number of detected genes per cells. The figure shows
that the total number of detected genes strongly correlates with the first two principal
components. Figure 8C is analogous to figure 7B of the original publication, with the color
scheme representing labeling each cell with its respective stage of the cell-cycle. Thus, figure
8C shows that the first two principal components correlate with the stage of the cell cycle. The
heatmap in figure 8D shows scaled normalized expression values for genes that contribute the
most to the first principle component. High read-count variability in a small number of genes
drives the variation around the first principle component. The column-wise annotations show
that the variation is driven mainly by cells in the G1 phase of the cell-cycle from the second
biological replicate. The HTML report for this analysis can be accessed here:
http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/kRYZ
https://paperpile.com/c/gIJdYe/kRYZ
https://paperpile.com/c/gIJdYe/kRYZ
http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html

Figure 8
Sample output from the PiGx scRNA-seq pipeline. A) Abundance of total uniquely mapping
UMIs per sample. B) Visualization of cells on the first and second principal component
calculated from the normalized expression values. The gradient shows the total number of UMIs
per cell. C) Same data representation as in B, but colored based on the cell cycle assignment.
Cell cycle was assigned using the cyclone function from the scran Bioconductor package (A. T.
L. Lun, McCarthy, and Marioni 2016). D) Expression heatmap of genes contributing most to the
first principle component. Genes are ordered in rows, while cell are in columns. Color bars
above the heatmap show relevant experimental variables.

Reproducibility metrics of the pipelines in different
systems
We define the complete software environment needed for each of the pipelines using Guix
package definitions. These package specifications not only outline the immediate dependencies
of the pipelines, but extend to the full software stack recursively. The dependency graph is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/gIJdYe/FEAs
https://paperpile.com/c/gIJdYe/FEAs

rooted in a handful of bootstrap binaries. Apart from these binary roots, every application or
library in the graph is built from source. Guix ensures that packages are built in an isolated
environment in which nothing but the specified dependencies are available. This is a
precondition for bit-reproducible builds, i.e. repeatable package builds that yield the very same
binary output for the same set of inputs. Under ideal circumstances (see below), a Guix
specification for the complete dependency graph and the set of all source code would be
sufficient to exactly reproduce the very same binaries of the pipelines presented in this paper.

Unfortunately, there are additional obstacles to bit-reproducibility that cannot be avoided purely
by the functional package management model. Examples for sources of irreproducibility in build
artefacts include embedded timestamps, non-deterministic sorting of strings, non-deterministic
compiler output, and the like. While some of these obstacles can be removed by deliberate
patching of compilers or applications, others are harder to diagnose and can thus lead to failure
to reproduce the same arrangement of bits in independent builds, be that on the same machine
at different points in time or on different systems. In the reports produced by our pipelines we
can eliminate differences due to timestamps by controlling them with the
SOURCE_DATE_EPOCH environment variable. This option can be invoked, in order to
produce identical HTML reports, provided there are no tools that introduce non-determinism (as
is the case for the PiGx BS-seq pipeline).

To estimate the level of bit reproducibility in our pipelines, we checked out version
v0.14.0-3597-g17967d1 of GNU Guix, repeatedly built the pipeline packages pigx-rnaseq ,
pigx-bsseq , pigx-chipseq , pigx-scrnaseq and their direct dependencies on three
different systems (an office workstation, a virtual machine, and a build farm consisting of 20
heterogeneous build nodes), and recorded the hashes of the package trees that were produced.
Whenever the hashes of any two builds differed, we looked at the exact differences with
diffoscope (https://diffoscope.org/). Upon closer inspection we identified a number of common
issues in non-deterministic builds, such as timestamps embedded in compiled binaries and text
files, or randomized file names in files generated by test suites.

Python dependencies are of particular note here, because they are generally not reproducible
due to the fact that the byte compiler records the timestamp of the source file in the compiled
binary. This means that all compiled Python files will differ when they are compiled at different
points in time. (This problem will be addressed in the upcoming Python 3.7, which will
implement PEP 552 for deterministic compilation.) To avoid this problem and increase the
number of packages that could be made reproducible, we patched our variant of Python 3.6
such that it resets the embedded timestamp in compiled files to the Unix epoch. This allowed us
to greatly increase the number of fully bit-reproducible packages. As can be seen in Table 2,
only a total of 8 out of 355 packages (or only about 2.2%) were not bit-reproducible for as-yet
unknown reasons.

Figure 9 shows the degree of bit-reproducibility for the direct dependencies of each of the
individual pipeline packages. Dependent packages whose files differed compared to builds on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

other systems fell either in the category of “minor problems” or “not reproducible”, dependent on
the source and magnitude of non-determinism. The exact dependency counts for each category
and pipeline package are listed in Table 2. A comprehensive list of all dependent packages that
were categorized as having “minor problems” is contained in Table 3. This table shows that the
reproducibility problems of these packages are of negligible magnitude and could be corrected
with minor patches to the package definitions in Guix.

Figure 9
Percentage of directly-dependent packages building in a bit-reproducible fashion across
different systems for each of the pipelines.

Package Not reproducible Minor problems Reproducible

pigx-bsseq 2 2 167

pigx-chipseq 7 9 236

pigx-rnaseq 7 9 211

pigx-scrnaseq 6 8 218

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

All pipelines 8 9 338

Table 2
Number of dependent packages and their reproducibility status. See Table 3 for more details
about packages with minor problems.

Package Magnitude Notes

r-minimal 2 bytes non-deterministic line break

python ~ 6% timestamp byte in header of
bytecode files

python-matplotlib ~ 1.7% single file difference

python-pycparser ~ 3% single file with timestamp

python-cffi ~ 1.8% recorded random test file names

python-numpy < 0.5% six bytecode files differ

python-simplejson 2 bytes two files have single byte
differences

gtk+ < 1% single file (icon cache)

glib < 0.1% single file difference

Table 3
Table of packages with minor reproducibility problems and the magnitude of irreproducible files.

Alternative ways to install the pipelines:
We generated application bundles containing all pipelines for use with Docker or Singularity.
These container images were generated by exporting the "closure" (i.e. the package and all
packages it references, recursively) of the pigx package (a package containing the individual
pipeline packages pigx-bsseq , pigx-chipseq , pigx-rnaseq , and pigx-scrnaseq)
from the declarative Guix package definition instead of iteratively modifying a base image
containing a GNU+Linux operating system in a series of imperative steps. The container images
are merely a translation of a functional description of the desired environment; as such, it is
independent of global state, such as the contents of third-party package repositories or build
time. The Docker image can be obtained at https://hub.docker.com/r/bimsbbioinfo/pigx/; the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://hub.docker.com/r/bimsbbioinfo/pigx/

Singularity image can be downloaded from
https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html. We used Guix at commit
5149aeb7e62cf62398b55be38469cd28c25d8d7d (version v0.14.0-7054-g5149aeb7e) to
generate these container images. This is the same version that we used to install the variant of
PiGx with which the plots and reports in this publication were generated.
Since the pipelines use the well-known GNU build system as implemented by the Autotools
suite, the pipelines can be configured and built in any environment providing the required
dependencies. The portable configure script detects and records references to necessary
software in the environment and reuses them at runtime using their absolute file names. Any
package manager (such as Conda) can be used to fashion such a build-time environment. With
regards to reproducibility, however, we recommend that a package manager be used that can
provide separate, immutable, and uniquely prefixed environments to ensure that references to
tools that are recorded at configuration time are identical to the variants that are used at
runtime.

Discussion
Computational workflows are becoming an indispensable part of the biological sciences as the
field becomes more data intensive. The diversity and amount of data requires many tools for
analysis.
Consequently, published software or workflows often come with a complex set of dependencies.
Even if sensible guidelines (e.g. “Software with Impact” 2014), such as sharing code online and
providing documentation, are employed, sometimes it is impossible to recreate the software
used for analysis. Providing the code and documentation alone does not guarantee
reproducibility or usability, nor do Docker containers completely remedy this problem.
In addition to reproducibility, there is also an increasing need for traceability and transparency,
for the purposes of comprehensive data security in applications that manage the sensitive data
collected in biomedical studies.

We propose GNU Guix and principled pipeline-as-software implementation as a solution to
reproducibility problems in complex bioinformatics workflows. Here, we demonstrated the utility
and the reproducibility of PiGx pipelines for genomics data analysis using GNU Guix.

Our decision to treat pipelines as first-class software packages and to adopt a conventional
build system with Autotools made it possible to reduce the installation of complex software
environments to a simple one-line command. By recording the exact locations of runtime
dependencies of the pipeline packages during the configuration stage, we were able to
eliminate ambiguity at runtime. When configuring the pipeline packages in an environment that
ensures that different versions or variants of applications and libraries are stored in unique
locations (such as an environment provided by GNU Guix), recording the exact location of
dependencies at configuration time allows us to reproduce the detected environment at runtime.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html
https://paperpile.com/c/gIJdYe/To24

We have shown that with a recursive definition of software dependencies using the framework
provided by the functional package management paradigm as implemented in GNU Guix, it is
possible to fully and exhaustively describe complex production-level bioinformatics software
environments on GNU+Linux systems. The software environments were fully specified at the
level of declarative, stateless package abstractions instead of using an imperative, stateful
approach. We have also shown that the principled declarative approach to the management of
software environments facilitates bit-reproducibility. The higher-level definitions of software
environments can be translated in an automated fashion to lower-level application bundles such
as Docker images. In contrast with container systems like Docker or Singularity, Guix encloses
the complete software environment and enables users to transparently rebuild it reproducibly
from source without having to trust a binary application bundle. Due to referential transparency,
binaries in Guix can only be the result of their corresponding sources.

Functional package management as implemented by GNU Guix significantly reduces the
complexity of, and lowers the barrier to, managing bit-reproducible software environments.
Users are freed from menial bookkeeping tasks such as keeping track of the origin of package
binaries, the time of installation, the order of installation instructions, the state of the operating
system at the time of installation, or any other runtime state. As far as users are concerned, it is
enough to know the names of the packages that should be installed (in our case, simply “pigx ”)
and the current version of Guix; everything else such as source code provenance tracking,
dependency management, package configuration, and compilation in isolated environments is
handled by Guix. The guarantees provided by Guix enable users to analyze obstacles to
experimental reproducibility beyond the software environment, such as sources of
non-determinism at runtime.

In our attempts to analyze the degree of repeatability of the HTML reports produced by PiGx,
we identified a number of such sources of non-determinism. The Salmon aligner, for example,
has a random component and does not provide a way for users to specify a seed for the
pseudo-random number generators. This makes it impossible to exactly repeat an analysis and
may require patching of the Salmon source code or virtualization of the random number
generator facilities of the host system. Other tools are sensitive to the user's locale settings and
may generate output in non-deterministic order. We were also surprised to find that an
increasingly large number of tools rely on a connection to the Internet, either directly or indirectly
through dependent packages. This can be a great source of non-determinism if the
experimental setup does not take the volatile nature of networked resources into account.
Another important obstacle to reproducibility is the large kernel binary at runtime. Although the
GNU C library provides a unified interface for all applications to use, the features that are
actually implemented by the kernel at runtime may differ vastly. For example, the variant of
Linux provided by Red Hat for their series 6 of operating systems reports its version as the
obsolete and unsupported 2.6.32, but it contains many backported features from much newer
kernel versions. Although this is usually not a problem, the kernel version and the implemented
features should be taken into account. In order to make it possible to use the pipelines on Red
Hat Enterprise Linux 6, we coordinated with other Guix developers to patch the GNU C library.

The use of a declarative mechanism to managing software environments is fundamental to
comprehensive reproducibility. This encompasses repeatable builds, bit-reproducible binaries,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

software and data provenance, control over the configuration space, and deterministic runtime
behavior. We have shown the feasibility of this approach in the domain of bioinformatics, and
propose that it serve as a template for reproducible computational workflows in other areas.

Acknowledgements
We are grateful to the many volunteer contributors to GNU Guix who keep improving the
system.

Funding
B.U acknowledges funding by the German Federal Ministry of Education and Research (BMBF)
as part of the RNA Bioinformatics Center of the German Network for Bioinformatics
Infrastructure (de.NBI) [031 A538C RBC (de.NBI)]. We also acknowledge support for K.W from
Berlin Institute of Health (BIH). This project has received funding from the European Union¹s
Horizon 2020 research and innovation programme under grant agreement No 654248

References

Akalin, Altuna, Vedran Franke, Kristian Vlahoviček, Christopher E. Mason, and Dirk Schübeler.
2015. “Genomation: A Toolkit to Summarize, Annotate and Visualize Genomic Intervals.”
Bioinformatics 31 (7): 1127–29.

Alles, Jonathan, Nikos Karaiskos, Samantha D. Praktiknjo, Stefanie Grosswendt, Philipp Wahle,
Pierre-Louis Ruffault, Salah Ayoub, et al. 2017. “Cell Fixation and Preservation for
Droplet-Based Single-Cell Transcriptomics.” BMC Biology 15 (1): 44.

Babraham, Bioinformatics. 2018a. “fastQC.” 2018.
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

———. 2018b. “Trim Galore!” 2018.
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.

Boettiger, Carl. 2015. “An Introduction to Docker for Reproducible Research.” ACM SIGOPS
Operating Systems Review 49 (1): 71–79.

Courtès, Ludovic, and Ricardo Wurmus. "Reproducible and user-controlled software
environments in HPC with Guix." European Conference on Parallel Processing. Springer,
Cham, 2015.

Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha,
Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2013. “STAR: Ultrafast Universal
RNA-Seq Aligner.” Bioinformatics 29 (1): 15–21.

Dolstra, Eelco, Merijn De Jonge, and Eelco Visser. "Nix: A Safe and Policy-Free System for
Software Deployment." LISA. Vol. 4. 2004.

Ewels, Philip, Måns Magnusson, Sverker Lundin, and Max Käller. 2016. “MultiQC: Summarize
Analysis Results for Multiple Tools and Samples in a Single Report.” Bioinformatics 32 (19):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/gIJdYe/mAgD
http://paperpile.com/b/gIJdYe/mAgD
http://paperpile.com/b/gIJdYe/mAgD
http://paperpile.com/b/gIJdYe/mAgD
http://paperpile.com/b/gIJdYe/1N9R
http://paperpile.com/b/gIJdYe/1N9R
http://paperpile.com/b/gIJdYe/1N9R
http://paperpile.com/b/gIJdYe/1N9R
http://paperpile.com/b/gIJdYe/1N9R
http://paperpile.com/b/gIJdYe/IeGU
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://paperpile.com/b/gIJdYe/IeGU
http://paperpile.com/b/gIJdYe/X1ta
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://paperpile.com/b/gIJdYe/X1ta
http://paperpile.com/b/gIJdYe/XXNR
http://paperpile.com/b/gIJdYe/XXNR
http://paperpile.com/b/gIJdYe/XXNR
http://paperpile.com/b/gIJdYe/XXNR
http://paperpile.com/b/gIJdYe/jrAH
http://paperpile.com/b/gIJdYe/jrAH
http://paperpile.com/b/gIJdYe/jrAH
http://paperpile.com/b/gIJdYe/jrAH
http://paperpile.com/b/gIJdYe/jrAH
http://paperpile.com/b/gIJdYe/v4sN
http://paperpile.com/b/gIJdYe/v4sN
http://paperpile.com/b/gIJdYe/v4sN
http://paperpile.com/b/gIJdYe/v4sN

3047–48.
Hon, Gary C., Chun-Xiao Song, Tingting Du, Fulai Jin, Siddarth Selvaraj, Ah Young Lee,

Chia-An Yen, et al. 2014. “5mC Oxidation by Tet2 Modulates Enhancer Activity and Timing
of Transcriptome Reprogramming during Differentiation.” Molecular Cell 56 (2): 286–97.

Huber, Wolfgang, Vincent J. Carey, Robert Gentleman, Simon Anders, Marc Carlson, Benilton
S. Carvalho, Hector Corrada Bravo, et al. 2015. “Orchestrating High-Throughput Genomic
Analysis with Bioconductor.” Nature Methods 12 (2): 115–21.

Hu, Peng, Emily Fabyanic, Deborah Y. Kwon, Sheng Tang, Zhaolan Zhou, and Hao Wu. 2017.
“Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in
Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.” Molecular Cell 68 (5):
1006–15.e7.

Klein, Allon M., Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres, Victor Li,
Leonid Peshkin, David A. Weitz, and Marc W. Kirschner. 2015. “Droplet Barcoding for
Single-Cell Transcriptomics Applied to Embryonic Stem Cells.” Cell 161 (5): 1187–1201.

Kolde, Raivo. 2018. “Pheatmap: Pretty Heatmaps. R Package Version 1.0.8.” CRAN.
https://CRAN.R-project.org/package=pheatmap.

Köster, Johannes, and Sven Rahmann. 2012. “Snakemake--a Scalable Bioinformatics Workflow
Engine.” Bioinformatics 28 (19): 2520–22.

Krueger, Felix, and Simon R. Andrews. 2011. “Bismark: A Flexible Aligner and Methylation
Caller for Bisulfite-Seq Applications.” Bioinformatics 27 (11): 1571–72.

Landt, Stephen G., Georgi K. Marinov, Anshul Kundaje, Pouya Kheradpour, Florencia Pauli,
Serafim Batzoglou, Bradley E. Bernstein, et al. 2012. “ChIP-Seq Guidelines and Practices
of the ENCODE and modENCODE Consortia.” Genome Research 22 (9): 1813–31.

Langmead, Ben, and Steven L. Salzberg. 2012. “Fast Gapped-Read Alignment with Bowtie 2.”
Nature Methods 9 (4): 357–59.

Lawrence, Michael, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert
Gentleman, Martin T. Morgan, and Vincent J. Carey. 2013. “Software for Computing and
Annotating Genomic Ranges.” PLoS Computational Biology 9 (8): e1003118.

Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,
Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup.
2009. “The Sequence Alignment/Map Format and SAMtools.” Bioinformatics 25 (16):
2078–79.

Linnarsson. 2018. “Loompy: Python Implementation of the Loom File Format.” 2018.
http://loompy.org.

Li, Qunhua, James B. Brown, Haiyan Huang, and Peter J. Bickel. 2011. “Measuring
Reproducibility of High-Throughput Experiments.” The Annals of Applied Statistics 5 (3):
1752–79.

Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2.” Genome Biology 15 (12): 550.

Lun, Aaran, Kevin Rue, Federico Marini, C. Soneson, and Mark Robinson. 2018. “iSEE -
Interactive SummarizedExperiment/SingleCellExperiment Explorer.” 2018.
https://github.com/csoneson/iSEE.

Lun, Aaron, and Davide Risso. 2018. “Single Cell Experiment: S4 Classes for Single Cell Data.”
Bioconductor.

Lun, Aaron T. L., Davis J. McCarthy, and John C. Marioni. 2016. “A Step-by-Step Workflow for
Low-Level Analysis of Single-Cell RNA-Seq Data with Bioconductor.” F1000Research 5
(August): 2122.

Macosko, Evan Z., Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/gIJdYe/v4sN
http://paperpile.com/b/gIJdYe/srXh
http://paperpile.com/b/gIJdYe/srXh
http://paperpile.com/b/gIJdYe/srXh
http://paperpile.com/b/gIJdYe/srXh
http://paperpile.com/b/gIJdYe/srXh
http://paperpile.com/b/gIJdYe/xgxK
http://paperpile.com/b/gIJdYe/xgxK
http://paperpile.com/b/gIJdYe/xgxK
http://paperpile.com/b/gIJdYe/xgxK
http://paperpile.com/b/gIJdYe/xgxK
http://paperpile.com/b/gIJdYe/kRYZ
http://paperpile.com/b/gIJdYe/kRYZ
http://paperpile.com/b/gIJdYe/kRYZ
http://paperpile.com/b/gIJdYe/kRYZ
http://paperpile.com/b/gIJdYe/kRYZ
http://paperpile.com/b/gIJdYe/kRYZ
http://paperpile.com/b/gIJdYe/6GOr
http://paperpile.com/b/gIJdYe/6GOr
http://paperpile.com/b/gIJdYe/6GOr
http://paperpile.com/b/gIJdYe/6GOr
http://paperpile.com/b/gIJdYe/6GOr
http://paperpile.com/b/gIJdYe/ldmr
http://paperpile.com/b/gIJdYe/ldmr
http://paperpile.com/b/gIJdYe/ldmr
https://cran.r-project.org/package=pheatmap
http://paperpile.com/b/gIJdYe/ldmr
http://paperpile.com/b/gIJdYe/CbFA
http://paperpile.com/b/gIJdYe/CbFA
http://paperpile.com/b/gIJdYe/CbFA
http://paperpile.com/b/gIJdYe/CbFA
http://paperpile.com/b/gIJdYe/9oSV
http://paperpile.com/b/gIJdYe/9oSV
http://paperpile.com/b/gIJdYe/9oSV
http://paperpile.com/b/gIJdYe/9oSV
http://paperpile.com/b/gIJdYe/SsXe
http://paperpile.com/b/gIJdYe/SsXe
http://paperpile.com/b/gIJdYe/SsXe
http://paperpile.com/b/gIJdYe/SsXe
http://paperpile.com/b/gIJdYe/SsXe
http://paperpile.com/b/gIJdYe/sPja
http://paperpile.com/b/gIJdYe/sPja
http://paperpile.com/b/gIJdYe/sPja
http://paperpile.com/b/gIJdYe/DypH
http://paperpile.com/b/gIJdYe/DypH
http://paperpile.com/b/gIJdYe/DypH
http://paperpile.com/b/gIJdYe/DypH
http://paperpile.com/b/gIJdYe/DypH
http://paperpile.com/b/gIJdYe/UcS9
http://paperpile.com/b/gIJdYe/UcS9
http://paperpile.com/b/gIJdYe/UcS9
http://paperpile.com/b/gIJdYe/UcS9
http://paperpile.com/b/gIJdYe/UcS9
http://paperpile.com/b/gIJdYe/UcS9
http://paperpile.com/b/gIJdYe/w7ab
http://loompy.org/
http://paperpile.com/b/gIJdYe/w7ab
http://paperpile.com/b/gIJdYe/gIcC
http://paperpile.com/b/gIJdYe/gIcC
http://paperpile.com/b/gIJdYe/gIcC
http://paperpile.com/b/gIJdYe/gIcC
http://paperpile.com/b/gIJdYe/gIcC
http://paperpile.com/b/gIJdYe/vpy5
http://paperpile.com/b/gIJdYe/vpy5
http://paperpile.com/b/gIJdYe/vpy5
http://paperpile.com/b/gIJdYe/vpy5
http://paperpile.com/b/gIJdYe/CvFW
http://paperpile.com/b/gIJdYe/CvFW
https://github.com/csoneson/iSEE
http://paperpile.com/b/gIJdYe/CvFW
http://paperpile.com/b/gIJdYe/ZMgI
http://paperpile.com/b/gIJdYe/ZMgI
http://paperpile.com/b/gIJdYe/ZMgI
http://paperpile.com/b/gIJdYe/FEAs
http://paperpile.com/b/gIJdYe/FEAs
http://paperpile.com/b/gIJdYe/FEAs
http://paperpile.com/b/gIJdYe/FEAs
http://paperpile.com/b/gIJdYe/FEAs
http://paperpile.com/b/gIJdYe/sV5g

Goldman, Itay Tirosh, et al. 2015. “Highly Parallel Genome-Wide Expression Profiling of
Individual Cells Using Nanoliter Droplets.” Cell 161 (5): 1202–14.

Pagès, Hervé. 2018. “DelayedArray: Delayed Operations on Array-like Objects.” Bioconductor.
Patro, Rob, Geet Duggal, Michael I. Love, Rafael A. Irizarry, and Carl Kingsford. 2017. “Salmon

Provides Fast and Bias-Aware Quantification of Transcript Expression.” Nature Methods 14
(4): 417–19.

Peng, Roger D. 2011. “Reproducible Research in Computational Science.” Science 334 (6060):
1226–27.

Quinlan, Aaron R., and Ira M. Hall. 2010. “BEDTools: A Flexible Suite of Utilities for Comparing
Genomic Features.” Bioinformatics 26 (6): 841–42.

Rampal, Raajit, Altuna Alkalin, Jozef Madzo, Aparna Vasanthakumar, Elodie Pronier, Jay Patel,
Yushan Li, et al. 2014. “DNA Hydroxymethylation Profiling Reveals That WT1 Mutations
Result in Loss of TET2 Function in Acute Myeloid Leukemia.” Cell Reports 9 (5): 1841–55.

Reimand, Jüri, Meelis Kull, Hedi Peterson, Jaanus Hansen, and Jaak Vilo. 2007. “g:Profiler--a
Web-Based Toolset for Functional Profiling of Gene Lists from Large-Scale Experiments.”
Nucleic Acids Research 35 (Web Server issue): W193–200.

Risso, Davide, Fanny Perraudeau, Svetlana Gribkova, Sandrine Dudoit, and Jean-Philippe Vert.
2018. “A General and Flexible Method for Signal Extraction from Single-Cell RNA-Seq
Data.” Nature Communications 9 (1): 284.

Robinson, James T., Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander,
Gad Getz, and Jill P. Mesirov. 2011. “Integrative Genomics Viewer.” Nature Biotechnology
29 (1): 24–26.

Ronen, Jonathan, and Altuna Akalin. 2018. “Network-Smoothing Based Imputation for Single
Cell RNA-Seq.” F1000Research 7 (January): 8.

Shu, Rui, Xiaohui Gu, and William Enck. 2017. “A Study of Security Vulnerabilities on Docker
Hub”. In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy (CODASPY '17). ACM, New York, NY, USA, 269-280. DOI:
https://doi.org/10.1145/3029806.3029832

“Software with Impact.” 2014. Nature Methods 11 (February). Nature Publishing Group, a
division of Macmillan Publishers Limited. All Rights Reserved.: 211.

Thorvaldsdóttir, Helga, James T. Robinson, and Jill P. Mesirov. 2013. “Integrative Genomics
Viewer (IGV): High-Performance Genomics Data Visualization and Exploration.” Briefings in
Bioinformatics 14 (2): 178–92.

Zhang, Yong, Tao Liu, Clifford A. Meyer, Jérôme Eeckhoute, David S. Johnson, Bradley E.
Bernstein, Chad Nusbaum, et al. 2008. “Model-Based Analysis of ChIP-Seq (MACS).”
Genome Biology 9 (9): R137.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/gIJdYe/sV5g
http://paperpile.com/b/gIJdYe/sV5g
http://paperpile.com/b/gIJdYe/sV5g
http://paperpile.com/b/gIJdYe/sV5g
http://paperpile.com/b/gIJdYe/W4jk
http://paperpile.com/b/gIJdYe/W4jk
http://paperpile.com/b/gIJdYe/W4jk
http://paperpile.com/b/gIJdYe/ZM3T
http://paperpile.com/b/gIJdYe/ZM3T
http://paperpile.com/b/gIJdYe/ZM3T
http://paperpile.com/b/gIJdYe/ZM3T
http://paperpile.com/b/gIJdYe/ZM3T
http://paperpile.com/b/gIJdYe/Yxf0
http://paperpile.com/b/gIJdYe/Yxf0
http://paperpile.com/b/gIJdYe/Yxf0
http://paperpile.com/b/gIJdYe/Yxf0
http://paperpile.com/b/gIJdYe/E0Sg
http://paperpile.com/b/gIJdYe/E0Sg
http://paperpile.com/b/gIJdYe/E0Sg
http://paperpile.com/b/gIJdYe/E0Sg
http://paperpile.com/b/gIJdYe/7ONW
http://paperpile.com/b/gIJdYe/7ONW
http://paperpile.com/b/gIJdYe/7ONW
http://paperpile.com/b/gIJdYe/7ONW
http://paperpile.com/b/gIJdYe/7ONW
http://paperpile.com/b/gIJdYe/ZXmI
http://paperpile.com/b/gIJdYe/ZXmI
http://paperpile.com/b/gIJdYe/ZXmI
http://paperpile.com/b/gIJdYe/ZXmI
http://paperpile.com/b/gIJdYe/Nnrf
http://paperpile.com/b/gIJdYe/Nnrf
http://paperpile.com/b/gIJdYe/Nnrf
http://paperpile.com/b/gIJdYe/Nnrf
http://paperpile.com/b/gIJdYe/Nnrf
http://paperpile.com/b/gIJdYe/nU4X
http://paperpile.com/b/gIJdYe/nU4X
http://paperpile.com/b/gIJdYe/nU4X
http://paperpile.com/b/gIJdYe/nU4X
http://paperpile.com/b/gIJdYe/nU4X
http://paperpile.com/b/gIJdYe/pvL4
http://paperpile.com/b/gIJdYe/pvL4
http://paperpile.com/b/gIJdYe/pvL4
http://paperpile.com/b/gIJdYe/pvL4
http://paperpile.com/b/gIJdYe/To24
http://paperpile.com/b/gIJdYe/To24
http://paperpile.com/b/gIJdYe/To24
http://paperpile.com/b/gIJdYe/To24
http://paperpile.com/b/gIJdYe/yOeh
http://paperpile.com/b/gIJdYe/yOeh
http://paperpile.com/b/gIJdYe/yOeh
http://paperpile.com/b/gIJdYe/yOeh
http://paperpile.com/b/gIJdYe/yOeh
http://paperpile.com/b/gIJdYe/YHHS
http://paperpile.com/b/gIJdYe/YHHS
http://paperpile.com/b/gIJdYe/YHHS
http://paperpile.com/b/gIJdYe/YHHS

